SUBJECT	IoT sensors				
FORMAT	Individual, pairs, or small groups				
PREPARATION TIME	1 hour				
ACTIVITY LENGTH	1h30				
DIFFICULTY LEVEL	Average				

• PEDAGOGICAL GOALS

- To develop an IoT project
- To work on implementing a sensor application
- To learn to connect electronic systems using the internet

• NECESSARY MATERIALS

- Computer room with computers connected to the Internet
- NodeMCU board or similar
- Breadboard
- Jumpers
- Potentiometer

Conducting the activity:

- If possible, divide the class into small groups. Each group must have access to a computer with Arduino IDE installed, a NodeMCU board or similar and a cable to connect the board to the computer. If this is not possible, try to take turns so that all students have access to the materials, or work in a collective format, projecting your screen.
- Organize the materials and provide a kit with the components for each group.
- Then ask each group to connect their board to their computer and open the Arduino IDE.
- Present the steps to transfer the code below onto the board.

Code

```
// ThingSpeak and ESP8266 Libraries
#include <ThingSpeak.h>
#include <ESP8266WiFi.h>
```

// Network data: name and password
char ssid[] = "xxxxxxxx"; // SSID network name
char pass[] = "xxxxxxxxx"; // Password

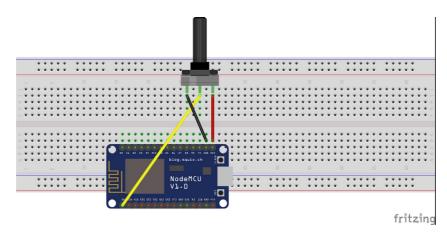
int status = WL_IDLE_STATUS; WiFiClient client;

int sensorValue; // variable that stores the value read by the sensor

// Information available on ThingSpeak: channel number and writing key
unsigned long canal = xxxx;
const char * WritingKeyAPI = "xxxxxxx";

```
void setup() {
  WiFi.begin(ssid, pass);
  ThingSpeak.begin(client);
}
```

```
void loop() {
    // Reads the input value on the analog pin 0
    sensorValue = analogRead(A0);
```


// Writes on ThingSpeak:
// (channel number, field number, value, write key)
ThingSpeak.writeField(channel, 1, sensorValue, WritingKeyAPI);

```
delay(5000); // ThingSpeak accepts value updates every 5 seconds.
}
```

- As next steps, it is possible to suggest implementing other sensors, such as a light or temperature sensor.

Conducting the activity:

- Check the project circuit below:

- Once the network parameters, password, write and read keys and channel of Thingspeak have changed, ask them to update the chart data within the Thingspeak platform.

Access: Public					
Private View	Public View	Channel Settings	Sharing	API Keys	Data Import / Export
🖶 Add Visua	lizations	Add Widgets	Export rece	nt data	
Channel	Stats				
Created: 2,ysa Last entry: Jes Entries: 2		.ago			
Fiel	d 1 Chart		6 0	× ×	
		Mural IoT			
	200		/	^	
	100				
lâmoada	100				
Binnedda		17:46:10 17:46:20 Date	17:46:30 1 ThingSp	7:46:40 eak.com	
Binneada					

- As next steps, it is possible to suggest implementing other sensors, such as a light or temperature sensor.

Discussion:

- After completing the activity, discuss the concepts learned with the class, testing and designing the code, if possible. Some questions that can guide the discussion::
 - What is a computer program? How does this program work?
 - Where in the code does the program read information from the internet?
 - Why is the value updated every 5 seconds?
 - What would happen if the piece of code that is inside the void loop function was passed to void setup?

Credits:

Nathan Rabinovitch (LSITec/USP)

